Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 829
Filtrar
1.
FASEB J ; 38(7): e23589, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572594

RESUMO

Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-ß signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica
2.
Front Immunol ; 15: 1365172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562932

RESUMO

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Assuntos
Biotina , Receptor ErbB-2 , Humanos , Camundongos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Biotina/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Linfócitos T , Citotoxicidade Celular Dependente de Anticorpos
3.
Biol Pharm Bull ; 47(4): 840-847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616114

RESUMO

Trastuzumab, an anti-HER2 monoclonal antibody, is the mainstay treatment for of HER2-positive breast cancer. However, trastuzumab resistance is often observed during treatment. Therefore, new therapeutic strategies are needed to enhance the clinical benefits of trastuzumab. Maitake ß-glucan MD-Fraction, isolated from Grifola frondosa, inhibits tumor growth by enhancing immune responses. In this study, we examined the effect of MD-Fraction on trastuzumab treatment of HER2-positive breast cancer. MD-Fraction did not directly inhibit the survival of HER2-positive breast cancer cells, alone or in the presence of trastuzumab in vitro. In HER2-positive xenograft models, the combination of MD-Fraction and trastuzumab was more effective than trastuzumab alone. Peripheral blood lymphocytes and splenic natural killer cells isolated from BALB/c nu/nu mice treated with MD-Fraction showed enhanced trastuzumab-induced antibody-dependent cellular cytotoxicity (ADCC) ex vivo. MD-Fraction-treated macrophages and neutrophils did not show enhanced trastuzumab cytotoxicity in the presence of heat-inactivated serum, but they showed enhanced cytotoxicity in the presence of native serum. These results suggest that MD-Fraction-treated macrophages and neutrophils enhance trastuzumab-induced complement-dependent cellular cytotoxicity (CDCC). Treatment of HER2-positive breast cancer cells with MD-Fraction in the presence of trastuzumab and native serum increased C3a release and tumor cell lysis in a dose-dependent manner, indicating that MD-Fraction enhanced trastuzumab-induced complement-dependent cytotoxicity (CDC) by activating the complement system. This study demonstrates that the combination of trastuzumab and MD-Fraction exerts a greater antitumor effect than trastuzumab alone by enhancing ADCC, CDCC, and CDC in HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Grifola , beta-Glucanas , Animais , Camundongos , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , beta-Glucanas/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Adjuvantes Imunológicos , Neoplasias da Mama/tratamento farmacológico , Camundongos Endogâmicos BALB C
4.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612751

RESUMO

The binding activity of various trastuzumab biosimilars versus the branded trastuzumab towards the glycosylated extracellular domain of the human epidermal growth factor receptor 2 (HER2) target in the presence of pertuzumab was investigated. We employed size exclusion chromatography with tetra-detection methodology to simultaneously determine absolute molecular weight, concentration, molecular size, and intrinsic viscosity. All trastuzumab molecules in solution exhibit analogous behavior in their binary action towards HER2 regardless of the order of addition of trastuzumab/pertuzumab. This analogous behavior of all trastuzumab molecules, including biosimilars, highlights the robustness and consistency of their binding activity towards HER2. Furthermore, the addition of HER2 to a mixture of trastuzumab and pertuzumab leads to increased formation of high-order HER2 complexes, up to concentrations of one order of magnitude higher than in the case of sequential addition. The observed increase suggests a potential synergistic effect between these antibodies, which could enhance their therapeutic efficacy in HER2-positive cancers. These findings underscore the importance of understanding the complex interplay between therapeutic antibodies and their target antigens, providing valuable insights for the development of more effective treatment strategies.


Assuntos
Medicamentos Biossimilares , Neoplasias , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Medicamentos Biossimilares/farmacologia , Medicamentos Biossimilares/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Cromatografia em Gel
5.
Theranostics ; 14(6): 2442-2463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646654

RESUMO

Rationale: Resistance to targeted therapies like trastuzumab remains a critical challenge for HER2-positive breast cancer patients. Despite the progress of several N-terminal HSP90 inhibitors in clinical trials, none have achieved approval for clinical use, primarily due to issues such as induction of the heat shock response (HSR), off-target effects, and unfavorable toxicity profiles. We sought to examine the effects of HVH-2930, a novel C-terminal HSP90 inhibitor, in overcoming trastuzumab resistance. Methods: The effect of HVH-2930 on trastuzumab-sensitive and -resistant cell lines in vitro was evaluated in terms of cell viability, expression of HSP90 client proteins, and impact on cancer stem cells. An in vivo model with trastuzumab-resistant JIMT-1 cells was used to examine the efficacy and toxicity of HVH-2930. Results: HVH-2930 was rationally designed to fit into the ATP-binding pocket interface cavity of the hHSP90 homodimer in the C-terminal domain of HSP90, stabilizing its open conformation and hindering ATP binding. HVH-2930 induces apoptosis without inducing the HSR but by specifically suppressing the HER2 signaling pathway. This occurs with the downregulation of HER2/p95HER2 and disruption of HER2 family member heterodimerization. Attenuation of cancer stem cell (CSC)-like properties was associated with the downregulation of stemness factors such as ALDH1, CD44, Nanog and Oct4. Furthermore, HVH-2930 administration inhibited angiogenesis and tumor growth in trastuzumab-resistant xenograft mice. A synergistic effect was observed when combining HVH-2930 and paclitaxel in JIMT-1 xenografts. Conclusion: Our findings highlight the potent efficacy of HVH-2930 in overcoming trastuzumab resistance in HER2-positive breast cancer. Further investigation is warranted to fully establish its therapeutic potential.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90 , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Animais , Feminino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
6.
JAAPA ; 37(4): 29-33, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531031

RESUMO

ABSTRACT: This article addresses cardiotoxicity in patients with breast cancer who are treated with anthracyclines and/or anti-human epidermal growth factor 2 (HER2) therapy, namely doxorubicin and trastuzumab. Development of concise clinical guidelines for chemotherapy-induced heart failure is ongoing. Through identification of specific risk factors and clinical predictors of cardiotoxicity, clinicians are able to better understand and define effective monitoring strategies and optimize patient care. Close cardiac monitoring is recommended for patients throughout treatment with anthracyclines and anti-HER2 therapy. Pretreatment risk assessment with echocardiography and evaluation of cardiovascular risk factors aid in predicting the development of left ventricular (LV) dysfunction. Further clinical trials are needed to increase understanding and optimize treatment guidelines for LV dysfunction in patients taking anthracyclines or anti-HER2 therapy.


Assuntos
Neoplasias da Mama , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Feminino , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Disfunção Ventricular Esquerda/induzido quimicamente , Antraciclinas/efeitos adversos
7.
Discov Med ; 36(182): 559-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531796

RESUMO

BACKGROUND: The epidermal growth factor receptor 2 (HER2) is overexpressed in 30% of breast cancers, and this overexpression is strongly correlated with a poor prognosis. Herceptin is a common treatment for HER2-positive breast cancer; however, cancer cells tend to adapt gradually to the drug, rendering it ineffective. The study revealed an association between the methylation status of the Homeobox C8 (HOXC8) gene and tumor development. Therefore, it is of paramount importance to delve into the interaction between HOXC8 and HER2-positive breast cancer, along with its molecular mechanisms. This exploration holds significant implications for a deeper understanding of the pathophysiological processes underlying HER2-positive breast cancer. METHOD: Tumor tissue and pathological data from patients with HER2-positive breast cancer were systematically collected. Additionally, the human HER2-positive breast cancer cell line, SKBR3, was cultured in vitro to assess both the expression level of HOXC8 and the degree of DNA methylation. The study aimed to explore the relationship between the relative expression of HOXC8 and the clinical characteristics of breast cancer patients. The expression level of HOXC8 and the promoter methylation of HOXC8 were verified by methylation treatment of SKBR3 breast cancer cells. The regulation of HOXC8 was meticulously carried out, leading to the division of the cells into distinct groups. The study further analyzed the expression levels and biological capabilities within each group. Finally, the in vitro and in vivo sensitivity of the cells to Herceptin, a common treatment for HER2-positive breast cancer, was measured to assess the efficacy of the drug. RESULT: In HER2-positive breast cancer cases characterized by poor methylation, there was an up-regulation of HOXC8. Its expression was found to be correlated with key clinical factors such as tumor size, lymph node status, clinical tumor, node, metastasis (cTNM) staging, and Herceptin resistance (p < 0.05). Upon methylation of breast cancer cells, there was a significant decrease in HOXC8 expression (p < 0.05). The study revealed that overexpression of HOXC8 resulted in increased proliferation, cloning, and metastasis of HER2-positive breast cancer cells, along with a reduced apoptosis rate (p < 0.05). Conversely, interference with HOXC8 expression reversed this scenario (p < 0.05). A Herceptin-resistant substrain, POOL2, was established using SKBR3 cells. Animal studies demonstrated that overexpressing HOXC8 accelerated tumor development and enhanced POOL2 cells' resistance to Herceptin (p < 0.05). However, following interference with HOXC8, POOL2 cells exhibited increased responsiveness to Herceptin, leading to a gradual reduction in tumor size (p < 0.05). CONCLUSIONS: In HER2-positive breast cancer, the expression of HOXC8 is elevated in a manner dependent on DNA methylation, and this elevated expression is closely linked to the pathology of the patient. Interfering with HOXC8 expression demonstrates the potential to partially inhibit the development and spread of breast cancer, as well as to alleviate resistance to Herceptin.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Trastuzumab/genética , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Neoplasias da Mama/patologia , Metilação de DNA , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/uso terapêutico
8.
ESMO Open ; 9(3): 102388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442452

RESUMO

BACKGROUND: The HER2DX risk-score has undergone rigorous validation in prior investigations involving patients with early-stage human epidermal growth factor receptor 2 (HER2)-positive (HER2+) breast cancer. In this study, we present the outcomes of the HER2DX risk-score within the most recent release of the Sweden Cancerome Analysis Network-Breast (SCAN-B) HER2+ cohort. This updated examination benefits from a larger patient sample, an extended follow-up duration, and detailed treatment information. MATERIALS AND METHODS: Clinical and RNAseq data from the SCAN-B dataset were retrieved from Gene Expression Omnibus (GSE81538). Among the 6600 patients, 819 had HER2+ breast cancer, with 757 individuals with research-based HER2DX risk-scores and corresponding survival outcomes. The HER2DX risk-score was evaluated (i) as a continuous variable and (ii) using predefined cut-offs. The primary endpoint for this study was overall survival (OS). The Kaplan-Meier method and Cox models were used to estimate OS and a multistate model with four states was fitted to better characterize patients' follow-up. RESULTS: The median follow-up time was 7.5 years (n = 757). The most common systemic therapy was chemotherapy with trastuzumab (82.0%) and most tumors were classified as T1-T2 (97.1%). The HER2DX risk-score as a continuous variable was significantly associated with OS after adjustment for clinical variables and treatment regimen [hazard ratios (HR) per 10-unit increment = 1.31, 95% confidence interval (CI) 1.13-1.51, P < 0.001] as well as within predefined risk groups (high versus low; HR = 2.57, 95% CI 1.36-4.85, P < 0.001). Patients classified as HER2DX high-risk also had higher risk of (i) breast cancer recurrence and (ii) death without previous recurrence. Within the subgroup of HER2+ T1N0 tumors (n = 297), those classified as high-risk demonstrated inferior OS compared to low-risk tumors (7-year OS 77.8% versus 96.8%, P < 0.001). The HER2DX mRNA ERBB2 score was associated with clinical HER2 status (area under the receiver operating characteristic curve = 0.91). CONCLUSIONS: In patients with early-stage HER2+ breast cancer, HER2DX risk-score provides prognostic information beyond clinicopathological variables, including treatment regimen with or without trastuzumab.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Prognóstico , Suécia/epidemiologia , Recidiva Local de Neoplasia/tratamento farmacológico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339219

RESUMO

Monoclonal antibody (mAb)-based and/or cell-based immunotherapies provide innovative approaches to cancer treatments. However, safety concerns over targeting normal cells expressing reactive antigens still exist. Therefore, the development of cancer-specific mAbs (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy is required to minimize the adverse effects. We previously screened anti-human epidermal growth factor receptor 2 (HER2) mAbs and successfully established a cancer-specific anti-HER2 mAb, H2Mab-250/H2CasMab-2 (IgG1, kappa). In this study, we showed that H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells in flow cytometry. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, recognized both breast cancer and normal epithelial cells. We further compared the affinity, effector activation, and antitumor effect of H2Mab-250 with trastuzumab. The results showed that H2Mab-250 exerted a comparable antitumor effect with trastuzumab in the mouse xenograft models of BT-474 and SK-BR-3, although H2Mab-250 possessed a lower affinity and effector activation than trastuzumab in vitro. H2Mab-250 could contribute to the development of chimeric antigen receptor-T or antibody-drug conjugates without adverse effects for breast cancer therapy.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Xenoenxertos , Receptor ErbB-2/imunologia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Lett ; 587: 216702, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336288

RESUMO

Resistance to trastuzumab and the poor efficacy of subsequent chemotherapy have become major challenges for HER2-positive gastric cancer (GC). As resistance evolves, tumor cells may acquire a new drug susceptibility profile, profoundly impacting the subsequent treatment selection and patient survival. However, the interplay between trastuzumab and other types of drugs in HER2-positive GC remains elusive. In our study, we utilized resistant cell lines and tissue specimens to map the drug susceptibility profile of trastuzumab-resistant GC, discovering that resistance to trastuzumab induces collateral resistance to commonly used chemotherapeutic agents. Additionally, patients with collateral resistance distinguished by a 13-gene scoring model in HER2-positive GC cohorts are predicted to have a poor prognosis and may be sensitive to cholesterol-lowering drugs. Mechanistically, endosomal cholesterol transport is further confirmed to enrich cholesterol in the plasma membrane, contributing to collateral resistance through the Hedgehog-ABCB1 axis. As a driver for cholesterol, Cdc42 is activated by the formation of the NPC1-TßRI-Cdc42 complex to facilitate endosomal cholesterol transport. We demonstrated that inhibiting Cdc42 activation with ZCL278 reduces cholesterol levels in the plasma membrane and reverses collateral resistance between trastuzumab and chemotherapy in vitro and in vivo. Collectively, our findings verify the phenomena and mechanism of collateral resistance between trastuzumab and chemotherapy, and propose a potential therapeutic target and strategy in the second-line treatment for trastuzumab-resistant HER2-positive GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
11.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338997

RESUMO

The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Trastuzumab/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/tratamento farmacológico
12.
Cancer Biother Radiopharm ; 39(1): 64-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363819

RESUMO

Background: Radiolabeled antibody fragments present a promising opportunity as theranostic agents, offering distinct advantages over whole antibodies. In this study, the authors investigate the potential of [177Lu]Lu-DTPA-F(ab')2-pertuzumab as a theranostic agent for precise targeting of human epidermal growth factor receptor 2 (HER2)-positive cancers. Additionally, the authors aim to quantitatively assess the binding synergism in the presence of cold trastuzumab. Materials and Methods: F(ab')2-pertuzumab was prepared by pepsin digestion and conjugated with a bifunctional chelator. The immunoconjugate was radiolabeled with 177Lu and characterized by chromatography techniques. Binding parameters (affinity, specificity, and immunoreactivity) and cellular binding enhancement studies were evaluated in HER2-overexpressing and triple-negative cell lines. The in vivo enhancement in tumor uptake of the radiolabeled immunoformulation was assessed in severe combined immunodeficient (SCID) mice bearing tumors, both in the presence and absence of unlabeled trastuzumab. Results: The formulation of [177Lu]Lu-DTPA-F(ab')2-pertuzumab could be prepared in high yields and with consistent radiochemical purity, ensuring reproducibility. Comprehensive in vitro and in vivo evaluation studies confirmed high specificity and immunoreactivity of the formulation toward HER2 receptors. Binding synergism of radiolabeled pertuzumab fragments in the presence of trastuzumab to HER2 receptors was observed. Conclusions: The radioformulation of [177Lu]Lu-DTPA-F(ab')2-pertuzumab holds great promise as a targeted approach for addressing HER2-positive cancers. A potentially effective strategy to amplify therapeutic efficacy involves dual epitope targeting by combining radiolabeled pertuzumab with cold trastuzumab.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Receptor ErbB-2 , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Camundongos SCID , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Pentético , Linhagem Celular Tumoral
13.
Clin Cancer Res ; 30(8): 1669-1684, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38345769

RESUMO

PURPOSE: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known. EXPERIMENTAL DESIGN: Dana-Farber and Foundation Medicine Inc. Colorectal cancer cohorts with genomic profiling were used to identify ERBB2-amplified cases [Dana-Farber, n = 47/2,729 (1.7%); FMI, n = 1857/49,839 (3.7%)]. Outcomes of patients receiving HER2-directed therapies are reported (Dana-Farber, n = 9; Flatiron Health-Foundation Medicine clinicogenomic database, FH-FMI CGDB, n = 38). Multisite HER2 IHC and genomic profiling were performed to understand HER2 intratumoral and interlesional heterogeneity. The impact of concurrent RAS comutations on the effectiveness of HER2-directed therapies were studied in isogenic colorectal cancer cell lines and xenografts. RESULTS: ERBB2 amplifications are enriched in left-sided colorectal cancer. Twenty percent of ERBB2-amplified colorectal cancers have co-occurring oncogenic RAS/RAF alterations. While RAS/RAF WT colorectal cancers typically have clonal ERBB2 amplification, colorectal cancers with co-occurring RAS/RAF alterations have lower level ERRB2 amplification, higher intratumoral heterogeneity, and interlesional ERBB2 discordance. These distinct genomic patterns lead to differential responsiveness and patterns of resistance to HER2-directed therapy. ERBB2-amplified colorectal cancer with RAS/RAF alterations are resistant to trastuzumab-based combinations, such as trastuzumab/tucatinib, but retain sensitivity to trastuzumab deruxtecan in in vitro and murine models. Trastuzumab deruxtecan shows clinical efficacy in cases with high-level ERBB2-amplified RAS/RAF coaltered colorectal cancer. CONCLUSIONS: Co-occurring RAS/RAF alterations define a unique subtype of ERBB2-amplified colorectal cancer that has increased intratumoral heterogeneity, interlesional discordance, and resistance to trastuzumab-based combinations. Further examination of trastuzumab deruxtecan in this previously understudied cohort of ERBB2-amplified colorectal cancer is warranted.


Assuntos
Neoplasias Colorretais , Variações do Número de Cópias de DNA , Humanos , Animais , Camundongos , Amplificação de Genes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Resultado do Tratamento , Mutação
14.
Adv Sci (Weinh) ; 11(16): e2308316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380506

RESUMO

Anti-HER2 (human epidermal growth factor receptor 2) therapies significantly increase the overall survival of patients with HER2-positive breast cancer. Unfortunately, a large fraction of patients may develop primary or acquired resistance. Further, a multidrug combination used to prevent this in the clinic places a significant burden on patients. To address this issue, this work develops a nanotherapeutic platform that incorporates bimetallic gold-silver hollow nanoshells (AuAg HNSs) with exceptional near-infrared (NIR) absorption capability, the small-molecule tyrosine kinase inhibitor pyrotinib (PYR), and Herceptin (HCT). This platform realizes targeted delivery of multiple therapeutic effects, including chemo-and photothermal activities, oxidative stress, and immune response. In vitro assays reveal that the HCT-modified nanoparticles exhibit specific recognition ability and effective internalization by cells. The released PYR inhibit cell proliferation by downregulating HER2 and its associated pathways. NIR laser application induces a photothermal effect and tumor cell apoptosis, whereas an intracellular reactive oxygen species burst amplifies oxidative stress and triggers cancer cell ferroptosis. Importantly, this multimodal therapy also promotes the upregulation of genes related to TNF and NF-κB signaling pathways, enhancing immune activation and immunogenic cell death. In vivo studies confirm a significant reduction in tumor volume after treatment, substantiating the potential effectiveness of these nanocarriers.


Assuntos
Neoplasias da Mama , Ouro , Hipertermia Induzida , Receptor ErbB-2 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Camundongos , Animais , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Hipertermia Induzida/métodos , Ouro/química , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Prata/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia Combinada/métodos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Proliferação de Células/efeitos dos fármacos
15.
ESMO Open ; 9(2): 102233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320430

RESUMO

BACKGROUND: Trastuzumab deruxtecan (T-DXd) has shown promising results in patients with breast cancer brain metastases (BCBMs). We conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of T-DXd in the human epidermal growth factor receptor 2 (HER2)-positive BCBM population. PATIENTS AND METHODS: We searched PubMed, Embase, and Cochrane Library databases as well as American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), and San Antonio Breast Cancer Symposium (SABCS) websites for clinical trials (CTs) and observational studies evaluating T-DXd in patients with HER2-positive BCBM. Heterogeneity was assessed with I2 statistics. Random effects models were used for all statistical analyses, which were carried out using R software (version 4.2.2). RESULTS: Ten studies were included, six CTs (n = 189) and four observational studies (n = 130), with a total of 319 patients. The median progression-free survival was 15 months [95% confidence interval (CI) 13.9-16.1 months]. The objective response rate (ORR) was 61% (95% CI 52% to 70%), and the intracranial (IC)-ORR was 61% (95% CI 54% to 69%). No significant differences in ORR and IC-ORR were observed between CTs and observational studies (P = 0.31 and 0.58, respectively). The clinical benefit rate (CBR) was 80% (95% CI 52% to 94%), and the IC-CBR was 70% (95% CI 54% to 82%). The ORR was 68% (95% CI 57% to 77%) in the subgroup of patients with stable BMs and 60% (95% CI 48%-72%) in patients with active BM, with no significant difference between groups (P = 0.35). CONCLUSIONS: Our systematic review and meta-analysis supports the IC activity of T-DXd in patients with stable BM and active BM. TRIAL REGISTRATION: International Prospective Register of Systematic Reviews (PROSPERO) under the protocol number CRD42023422589.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Camptotecina/análogos & derivados , Imunoconjugados , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico
16.
Sci Rep ; 14(1): 2908, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316885

RESUMO

Breast cancer is the most common diagnosed cancer, the HER2-positive subtype account for 15% of all breast cancer. HER2-targeted therapy is the mainstay treatment for HER2-positive breast cancer. Cuproptosis is a novel form of programmed cell death, and is caused by mitochondrial lipoylation and destabilization of iron-sulfur proteins triggered by copper, which was considered as a key player in various biological processes. However, the roles of cuproptosis-related genes in HER2-positive breast cancer remain largely unknown. In the present study, we constructed a prognostic prediction model of HER2-positive breast cancer patients using TCGA database. Dysregulated genes for cells resistant to HER2-targeted therapy were analyzed in the GEO dataset. KEGG pathway, GO enrichment and GSEA was performed respectively. The immune landscape of DLAT was analyzed by CIBERSORT algorithm and TIDE algorithm. HER2-positive breast cancer patients with high CRGs risk score showed shorter OS. DLAT was downregulated and correlated with better survival of HER2-positive breast cancer patients (HR = 3.30, p = 0.022). High expressed DLAT was associated with resistant to HER2-targeted therapy. Knocking down DLAT with siRNA increased sensitivity of breast cancer to trastuzumab. KEGG pathway and GO enrichment of DEGs indicated that DLAT participates in various pathways correlated with organelle fission, chromosome segregation, nuclear division, hormone-mediated signaling pathway, regulation of intracellular estrogen receptor signaling pathway, condensed chromosome and PPAR signaling pathway. There was a negative correlation between TIDE and DLAT expression (r = - 0.292, p < 0.001), which means high DLAT expression is an indicator of sensitivity to immunotherapy. In conclusion, our study constructed a four CRGs signature prognostic prediction model and identified DLAT as an independent prognostic factor and associated with resistant to HER2-targeted therapy for HER2-positive breast cancer patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Prognóstico , Algoritmos , Apoptose , Cobre
17.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 462-473, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38379418

RESUMO

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) is characterized by high invasiveness. Trastuzumab considerably improves the prognoses of HER2-positive BC, but some patients exhibit drug resistance. In this study, the effects of XLLXF combined with trastuzumab on the proliferation, apoptosis, invasion, and migration of HER2-positive BC cells are evaluated, and network pharmacology is performed. Then, we conduct an in vivo study using a xenograft mouse model of HER2-positive BC, and tumor growth is monitored. The expression levels of cytokines are measured by ELISA. Molecular docking is performed to observe the binding stability of IL2, JAK, STAT, and TNF with curcumenol, icariside-II, lobetyolin, and scutellarein. Finally, we observe changes in JAK1 and TNF-α in tumor tissues by immunohistochemistry. The results show that XLLXF enhances the inhibitory effects of trastuzumab on the proliferation, colony formation ability, migration, and invasion of HER2-positive BC cells and promotes apoptosis. Network pharmacology reveals that XLLXF may exert its effects on HER2-positive BC by modulating pathways such as the ErbB, JAK-STAT, and NF-κB pathways. Potential targets include cytokines closely related to immune function. In the in vivo study, XLLXF synergistically enhances the inhibitory effects of trastuzumab on tumor growth. ELISA reveals that XLLXF combined with trastuzumab increases the levels of IL-15, IL-2, TNF-α, and IFN-γ in tumor-bearing mice. Immunohistochemistry confirms that XLLXF can regulate the expressions of JAK1 and TNF-α. This study demonstrates that XLLXF can synergistically enhance the efficacy of trastuzumab in targeting HER2-positive BC. The mechanism may involve the modulation of inflammatory factors.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Trastuzumab/farmacologia , Neoplasias da Mama/metabolismo , Fator de Necrose Tumoral alfa , Simulação de Acoplamento Molecular , Receptor ErbB-2/genética , Citocinas , Linhagem Celular Tumoral
18.
J Immunother Cancer ; 12(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417916

RESUMO

BACKGROUND: The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS: Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS: Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS: Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Humanos , Feminino , Molécula 1 de Adesão Intercelular , Receptores de Antígenos Quiméricos/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Regulação para Baixo , Evasão Tumoral , Linhagem Celular Tumoral , Células Matadoras Naturais , Trastuzumab/farmacologia , Anticorpos , Receptores Fc/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo
19.
Biochemistry ; 63(5): 644-650, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350078

RESUMO

The concept of tag-free protein modification has attracted considerable interest in chemical biology because of its flexible and straightforward reaction process. In 2021, a groundbreaking approach using lipoate ligase A (LplA) for tag-free enzymatic modification of antibodies was unveiled, demonstrating its potential for the generation of precise antibody conjugates. In this study, to further explore LplA-mediated antibody-drug conjugate (ADC) synthesis, we performed initial biological evaluations of ADCs synthesized using LplA. Using the anti-HER2 antibody trastuzumab, we introduced octanoic acid azide using LplA and subsequently obtained an ADC using click chemistry with the drug DBCO-VC-PAB-MMAE. The bioactivity of the synthesized anti-HER2-ADC was evaluated using HER2-positive SKBR-3 and HER2-negative MCF7 cells. Its toxicity and selectivity were found to be comparable to those of the FDA-approved Kadcyla. In addition, a stability study involving rat and human plasma demonstrated the stability of the LplA-mediated ADC. Additionally, the affinity for the neonatal Fc receptor (FcRn) was retained after conjugation. These preliminary in vitro evaluations suggested that LplA-derived ADCs can have considerable pharmaceutical potential. Our results can set the stage for further in vivo evaluations and safety assessments. We suggest that the integration of tag-free LplA methods into the production of ADCs can offer a novel and promising approach for biopharmaceutical manufacturing.


Assuntos
Antineoplásicos , Imunoconjugados , Ratos , Animais , Humanos , Ligases , Imunoconjugados/farmacologia , Antineoplásicos/farmacologia , Células MCF-7 , Trastuzumab/farmacologia , Linhagem Celular Tumoral
20.
Sci Rep ; 14(1): 3771, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355949

RESUMO

Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and hypoxia are associated with radioresistance. The goal of this study is to study the synergy of anti-HER2, trastuzumab, and anti-EGFR, cetuximab, and characterize the tumor microenvironment components that may lead to increased radiation sensitivity with dual anti-HER2/EGFR therapy in head and neck squamous cell carcinoma (HNSCC). Positron emission tomography (PET) imaging ([89Zr]-panitumumab and [89Zr]-pertuzumab) was used to characterize EGFR and HER2 in HNSCC cell line tumors. HNSCC cells were treated with trastuzumab, cetuximab, or combination followed by radiation to assess for viability and radiosensitivity (colony forming assay, immunofluorescence, and flow cytometry). In vivo, [18F]-FMISO-PET imaging was used to quantify changes in oxygenation during treatment. Bliss Test of Synergy was used to identify combination treatment synergy. Quantifying EGFR and HER2 receptor expression revealed a 50% increase in heterogeneity of HER2 relative to EGFR. In vitro, dual trastuzumab-cetuximab therapy shows significant decreases in DNA damage response and increased response to radiation therapy (p < 0.05). In vivo, tumors treated with dual anti-HER2/EGFR demonstrated decreased tumor hypoxia, when compared to single agent therapies. Dual trastuzumab-cetuximab demonstrates synergy and can affect tumor oxygenation in HNSCC. Combination trastuzumab-cetuximab modulates the tumor microenvironment through reductions in tumor hypoxia and induces sustained treatment synergy.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral , Receptores ErbB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...